Abstract beta-expansions and ultimately periodic representations

نویسندگان

  • Michel Rigo
  • Wolfgang Steiner
چکیده

beta-expansions and ultimately periodic representations Michel Rigo, Wolfgang Steiner To cite this version: Michel Rigo, Wolfgang Steiner. Abstract beta-expansions and ultimately periodic representations. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2005, 17, pp.283-299. HAL Id: hal-00023235 https://hal.archives-ouvertes.fr/hal-00023235 Submitted on 21 Apr 2006 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. cc sd -0 00 23 23 5, v er si on 1 2 1 A pr 2 00 6 Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000–000 Abstract β-expansions and ultimately periodic representationsβ-expansions and ultimately periodic representations par Michel Rigo et Wolfgang Steiner Résumé. Pour les systèmes de numération abstraits construits sur des langages réguliers exponentiels (comme par exemple, ceux provenant des substitutions), nous montrons que l’ensemble des nombres réels possédant une représentation ultimement périodique est Q(β) lorsque la valeur propre dominante β > 1 de l’automate acceptant le langage est un nombre de Pisot. De plus, si β n’est ni un nombre de Pisot, ni un nombre de Salem, alors il existe des points de Q(β) n’ayant aucune représentation ultimement périodique. Abstract. For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is Q(β) if the dominating eigenvalue β > 1 of the automaton accepting the language is a Pisot number. Moreover, if β is neither a Pisot nor a Salem number, then there exist points in Q(β) which do not have any ultimately periodic representation. For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is Q(β) if the dominating eigenvalue β > 1 of the automaton accepting the language is a Pisot number. Moreover, if β is neither a Pisot nor a Salem number, then there exist points in Q(β) which do not have any ultimately periodic representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real numbers having ultimately periodic representations in abstract numeration systems

Using a genealogically ordered infinite regular language, we know how to represent an interval ofR. Numbers having an ultimately periodic representation play a special role in classical numeration systems. The aim of this paper is to characterize the numbers having an ultimately periodic representation in generalized systems built on a regular language. The syntactical properties of these words...

متن کامل

Syntactic Complexity of Ultimately Periodic Sets of Integers and Application to a Decision Procedure

We compute the cardinality of the syntactic monoid of the language 0∗ repb(mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to a well studied problem: decide whether or not a b-recognizable set of integers is ultimately periodic.

متن کامل

Syntactic Complexity of Ultimately Periodic Sets of Integers

We compute the cardinality of the syntactic monoid of the language 0∗ rep b (mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to some well studied problem: decide whether or not a brecognizable sets of integers is ultimately periodic.

متن کامل

Beta Expansions for Regular Pisot Numbers

A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is, in general, infinitely long and non-repeating, it is known that if the base is a Pisot number, then this expansion will always be finite or periodic. Some work has been done to learn more about these expansions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017